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Abstract

This paper investigates the free in-plane vibration of stepped circular arches. The effects of axial extension, transverse

shear deformation and rotatory inertia are included in the governing equations. The solution is obtained exactly by using

the initial value method. The solution procedure is also applied to cases in which only one effect is considered in order to

determine its contribution to the results. The results show that the aforementioned effects must be taken into account to get

a better approximation to the actual behaviour of an arch, even if it is slender. The effects of step ratio, location of the step,

boundary condition, opening angle and slenderness ratio on the frequency coefficients are studied. The mode transition

phenomenon is also investigated and the mode shapes are given in figures. The examples in the literature are solved and

comparisons are presented in the tables. Numerical solutions are obtained by using ANSYS which is a commercial finite

element program. Experiments are also performed to verify the theoretical and numerical results.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The arch constitutes a common structural element in many industrial fields due to its capability of
transferring loads through the combined action of bending and stretching for in-plane deformations. Due to
practical importance of arches, their dynamics and especially free vibrations as well as static behaviour have
been studied extensively. More than 600 articles have been summarized in review articles [1–4]. In spite of the
fact that many excellent papers deal with in-plane vibrations of circular arches having uniform cross-sections,
there is a very limited number of studies available on the dynamic behaviour of arches of variable cross-
section. This study presents an exact solution by including axial extension, shear deformation and rotatory
inertia effects for in-plane free vibration of stepped circular arches.

In general, the in-plane and out-of-plane vibrations of a planar arch are coupled. However, based on the
Euler–Bernoulli hypothesis, if the cross-section of arch is uniform and doubly symmetric, then the in-plane
and out-of-plane vibrations are uncoupled.

It is often difficult and sometimes impossible to find general closed-form solutions for the vibration problem
of a more general arch, since the governing differential equations possess variable coefficients. The exact
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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solution of the governing equations exists only for a circular arch of uniform cross-section. The equations of
free in-plane vibration of an arch become very complex when the effects of axial extension, shear deformation
and rotatory inertia are taken into account. If shear deformation and rotatory inertia effects are neglected,
then the equations become much simpler, but the main simplification arises if the arch axis is supposed to be
also inextensible.

Laura et al. [5] used the Rayleigh–Ritz method to investigate in-plane vibration of an arch having non-
uniform thickness by using the classical arch theory in which the effects of axial extension, shear deformation
and rotatory inertia are neglected. Gutierrez et al. [6] studied the in-plane vibration of non-circular arches by
using polynomial functions and the Ritz method. The classical arch theory was employed. Balasubramanian
and Prathaph [7] developed an arch element for static and dynamic analysis of stepped circular arches by
considering the axial extension and shear deformation effects. Rossi et al. [8] studied the in-plane vibrations of
cantilevered non-circular arches of non-uniform cross-sections. The Ritz method with Rayleigh’s optimization
criteria was applied by using the classical arch theory. Finite element solutions were also obtained. Rossi and
Laura [9] introduced the dynamic stiffening effect and used finite element method by considering the effects of
axial extension and shear deformation. Tong et al. [10] investigated free and forced in-plane vibrations of
circular arches with variable cross-sections by using the Kirchhoff assumptions in which the neutral axis is
inextensible; shear deformation and rotatory inertia are neglected. The closed-form solutions for the
symmetric and asymmetric stepped arches were obtained. Liu and Wu [11] applied the generalized differential
quadrature rule based on Kirchhoff assumptions to solve in-plane free vibrations of circular arches with
uniform, continuously varying and stepped cross-sections. Karami and Malekzadeh [12] applied the
differential quadrature method to solve free vibrations of circular arches with variable cross-sections by taking
into account the effects of axial extension and rotatory inertia.

The foregoing review shows that most of the researchers calculate the natural frequencies of arches
with varying cross-sections by means of approximate methods such as the Galerkin method, the
Rayleigh–Ritz method, cell discretization method, differential quadrature method and finite element method
(FEM). The approximate results are obtained for some specific cases and boundary conditions. The
Euler–Bernoulli beam theory which neglects the effects of axial extension, shear deformation and rotatory
inertia is used in most of studies. With the advancement of computer technology and commercial software, the
use of finite element method becomes more advantageous for complicated geometries, in the absence of any
exact solution.

In the literature, the discontinuity in the cross-section of arch is considered at the crown and the effect of
position of step on the frequencies is not investigated. They do not present the mode shapes.

A phenomenon of transition of modes from extensional into inextensional, which occurs at certain
combinations of curvature and length of the arch has been observed by several authors [13–15]. The mode
transition phenomenon is characterized by the sharp increase in frequencies of modes which is accompanied
by a significant change in the mode shapes. There is still no comprehensive analysis of mode transition
phenomenon and there are no proper explanations and methods for prediction the frequencies of an arch. This
is possibly due to the fact that numerical simulations, commonly employed for the analyses, provide little
analytical insight into the vibration problem.

In this study, the free in-plane vibration of a circular arch with discontinuously varying cross-section is
investigated by using the exact solution of the equations of free vibration of a circular arch with uniform cross-
section. The aim of the present study is to extend the exact solution procedure given by Tufekci and Arpaci
[16] to the stepped arches. In the following, a systematic approach is presented for investigating the free
vibrations of stepped circular arches. As an approximation, the arch with discontinuously varying cross-
sections is divided into a number of arches with constant cross-sections. For each arch element, the governing
equations given in Ref. [16] are employed and the exact solution can be obtained by extending the procedure in
Ref. [16]. The overall solution of free vibration of the stepped arch can be expressed by satisfying boundary
conditions at the ends and continuity and equilibrium conditions at the boundary of the adjacent elements.
The effects of boundary conditions, opening angles, slenderness ratios, step ratios and position of the step on
the frequency coefficients are given in diagrams. The effects of axial extension, transverse shear deformation
and rotatory inertia are also considered individually. The mode shapes of the arches and the mode transition
phenomenon are investigated.
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2. Analysis

The governing equations of free in-plane vibrations of a circular arch with constant cross-section are given
by Tufekci and Arpaci [16].

dw

df
¼ uþ

R

EA
F t;

du

df
¼ �wþ

RF n

GA=kn

þ ROb,

dOb

df
¼

R

EIb

Mb;
dMb

df
¼ �RF n � Rm

Ib

A
o2Ob,

dFt

df
¼ F n � Rmo2w;

dFn

df
¼ �Ft � Rmo2u, ð1Þ

where u, w are the normal and tangential displacements, Ob is the rotation angle about the binormal axis, f is
the angular coordinate, R is the radius of curvature of undeformed beam axis, Fn and Ft are normal and
tangential components of internal force, Mb is the internal moment about the binormal axis, E and G are
Young’s and shearing moduli, A is the cross-sectional area, Ib is the moment of inertia about the binormal
axis, m is the mass per unit length, kn is the factor of shear distribution along the normal axis.

These equations can be written in matrix form as follows:

dyðfÞ
df
¼ AðfÞyðfÞ, (2)

where,

yðfÞ ¼

w

u

Ob

Mb

Ft

Fn

2
6666666664

3
7777777775
; A ¼

0 1 0 0 R=EA 0

�1 0 R 0 0 Rkn=GA

0 0 0 R=EIb 0 0

0 0 �RmðIb=AÞo2 0 0 �R

�Rmo2 0 0 0 0 1

0 �Rmo2 0 0 �1 0

2
6666666664

3
7777777775
, (3)

The exact solution of equations is given in Ref. [16] as follows:

yðfÞ ¼ eAfy0 (4)

provided that the vector of initial values y0 ¼ yðf0Þ, at the reference coordinate f ¼ f0, is known. The term
eAf can be expressed exactly.
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Fig. 1. Geometry of the stepped arch (n, b, t : right-handed coordinate axes).
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The stepped circular arch given in Fig. 1 is considered in this study. This arch is divided into two parts with
constant cross-sections. For each arch element, the equation of motion (1) can be written in matrix form as

dy1
df1

¼ A1ðf1Þy1ðf1Þ; �fApf1pc,

dy2
df2

¼ A2ðf2Þy2ðf2Þ; cpf2pfB. (5)

The exact solution of each set of equations can be found as

y1ðf1Þ ¼ eA1f1y01; y2ðf2Þ ¼ eA2f2y02 (6)

provided that the vectors of initial values y01 ¼ y1ðf01Þ, y02 ¼ y2ðf02Þ at the reference coordinates f1 ¼ f01,
f2 ¼ f02 are known. The vectors of initial values must be obtained in order to specify the solution vectors
y1ðf1Þ and y2ðf2Þ. Twelve elements of the vectors can be found by using the 12 equations obtained from the
boundary conditions at the ends A, B and the continuity and equilibrium conditions at point C where f1 ¼ c
and f2 ¼ c.

2.1. Boundary conditions

For end A in Fig. 1:

Hinged end : w1ð�fAÞ ¼ 0; u1ð�fAÞ ¼ 0; Mb1ð�fAÞ ¼ 0,

Clamped end : w1ð�fAÞ ¼ 0; u1ð�fAÞ ¼ 0; Ob1ð�fAÞ ¼ 0,

Free end : Mb1ð�fAÞ ¼ 0; Ft1ð�fAÞ ¼ 0; F n1ð�fAÞ ¼ 0.

Similar expressions are specified for the end B in Fig. 1. These conditions yield six homogeneous linear
equations in terms of the initial values at reference coordinates f1 ¼ f01 and f2 ¼ f02.

2.2. Kinematic and kinetic continuity conditions

The continuity conditions between the adjacent domains have to be expressed. The kinematic and kinetic
continuity conditions at the cross-section C, where f1 ¼ c and f2 ¼ c, require that all quantities of both sub-
domains must be equal to each other:

y1ðcÞ ¼ y2ðcÞ. (7)

These equations can be written in such a form

eA1cy01 ¼ eA2cy02. (8)

This also yields six simultaneous linear equations in terms of the initial values at the reference coordinates
y01 and y02.

Thus, the 12 equations associated with the boundary and continuity conditions can be written in matrix
form

X1 0

eA1c �eA2c

0 X2

2
64

3
75 y01

y02

" #
¼ 0½ �, (9)

where X1 and X2 are 3� 6 matrices obtained from the boundary conditions at the ends A and B, respectively;
0’s are 3� 6 zero matrices. The determinant of the coefficient matrix of Eq. (9) must equal to zero in order to
get non-trivial solution of these linear homogeneous equations. It is also possible to apply this solution
procedure to other cases in which some effects are neglected.
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3. Numerical evaluations and comparisons

The proposed method is applied to obtain the first five natural frequencies of the stepped arch with various
boundary conditions (clamped–clamped, hinged–hinged, free–free, hinged–clamped and clamped–free). The
frequency coefficients are given as ci ¼ oiR

2fT
2 (m1/E1Ib1)

1/2 and calculated for five different cases which are
intended to show the effects of the variation of all these geometry parameters on the frequency coefficient.

Case 1: No effect is considered (the Euler–Bernoulli arch theory in which the effects of axial extension, shear
deformation and rotatory inertia are not considered).

Case 2: All effects are considered.
Case 3: Only shear deformation effect is considered.
Case 4: Only rotatory inertia effect is considered.
Case 5: Only axial extension effect is considered.
The examples are solved for all classical boundary conditions, i.e. for clamped–clamped, hinged–hinged,

hinged–clamped, clamped–free and free–free end conditions. The effects of the slenderness ratio l ¼ R/i
(where i ¼

ffiffiffiffiffiffiffiffiffi
I=A

p
is the radius of gyration), the step ratio Z ¼ h2/h1, the opening angle of the arch fT, the

position parameter of the step c/fT on the frequency coefficient are studied. The mode transition
phenomenon is also studied for several configurations.

Fig. 2 shows the first frequency coefficients of a clamped–clamped arch for different cases in terms of fT and
for the value of l ¼ 50. It can be seen that the axial extension effect is dominant. It is not possible to model the
realistic arch behaviour by neglecting the axial extension effect. As it is expected, the rotatory inertia has
negligible effect on the first mode. The frequency coefficient increases sharply for small opening angle and then
decreases slowly for larger opening angles. The mode transition phenomenon for this arch is observed around
the angle of 601. The mode shape changes significantly from extensional into inextensional. As the slenderness
ratio increases, the mode transition occurs in smaller angles. As the step ratio changes, the characteristics of
the curve remain still the same for hinged–hinged, free–free and hinged–clamped boundary conditions. The
figures for more slender arches or for other boundary conditions are very similar to those given in the present
paper and they are not presented here for the brevity.

The frequency coefficients of a clamped–free arch are given in Fig. 3. The effects of the cases on the
frequencies are shown in this figure. The axial extension has almost no influence on the frequency, and the
shear deformation effect is dominant for this boundary condition, which is expected. The frequency coefficient
increases as the opening angle increases. This characteristic is not observed in the frequency coefficient curves
for higher modes.

The lowest five frequency coefficients of a hinged–hinged arch are given in Fig. 4. The mode transition
phenomenon occurs in the opening angles in which the curves approach each other. Other boundary
conditions, step ratio and position parameter do not change the characteristic of these curves.
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Fig. 2. The first frequency coefficient in terms of opening angle fT for a clamped–clamped arch with l ¼ 50, c=fT ¼ 0:2 and

Z ¼ 0:8. —&—, Case 1; —B—, Case 2; —n—, Case 3; —�—, Case 4; —*—, Case 5.
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Fig. 3. The first frequency coefficient in terms of opening angle fT for a clamped–free arch with l ¼ 50, c/fT ¼ 0.2 and Z ¼ 0.8.
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Fig. 4. The lowest five frequency coefficients in terms of opening angle fT for a hinged–hinged arch with l ¼ 50, c/fT ¼ 0.2 and Z ¼ 0.8.
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In Fig. 5, the effects of step position on the frequency coefficients of a hinged–clamped arch are given for
constant opening angles. As it can be seen in the figure, the frequency coefficient is affected slightly by the step
position.

Fig. 6 gives the effect of position parameter on the frequency coefficients of a clamped–clamped arch. The
similar curves are obtained for other boundary conditions except for a clamped free arch (Fig. 7). As it can be
seen in Fig. 7, the frequency coefficient will be minimum for Z ¼ 1:2 and will be maximum for Z ¼ 0:8 around
the position parameter of step c /fT ¼ 0.1.

Fig. 8 gives the frequency coefficients for all boundary conditions. The frequency coefficients increase
sharply for small opening angles and then decrease slowly for clamped–clamped, hinged–clamped and
hinged–hinged boundary conditions. But the frequency coefficients of a clamped free arch increase as the
opening angle increases.

Fig. 9 shows the effect of step ratio on the frequency coefficient of a hinged–clamped arch. The frequency
coefficient increases, as the step ratio increases and the slope of the curves decrease, as the position parameters
of the step increase. The similar diagrams are obtained for other boundary conditions except for clamped–free
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arch. In Fig. 10, the frequency coefficients are given for a clamped–free arch. The frequency coefficients are
rather sensitive to the position parameter of step for all step ratios.

Fig. 11 shows the effect of step position on the first mode shape of a clamped–clamped arch with Z ¼ 0:4,
l ¼ 50 and fT ¼ 501. The mode transition from inextensional into extensional can be observed as the position
parameter of step changes from 0.0 to 0.4. It is obvious that the position parameter of step can change the
mode shape for such a non-shallow arch with fT ¼ 501.

The first mode shapes of a clamped–clamped arch with Z ¼ 0:6, l ¼ 50, fT ¼ 501 and c=fT ¼ 0:0 are given
by neglecting all effects (case 1) in Fig. 12(a) and also by considering all effects (case 2) in Fig. 12(b). The mode
shape given in Fig. 12(a) is inextensional but that in Fig. 12(b) is extensional dominant. As it can be easily seen
by comparing Fig. 11 (the dotted line) and 12(b) in which the step ratios are h ¼ 0.4 and 0.6, respectively, the
step ratio can change the mode shape.

The following section gives the comparisons between the results of studies in the literature and those
obtained in this study. In the literature, the discontinuity of arch has been considered at the crown and
unsymmetrical position of step has not been investigated. Also, three boundary conditions have been
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examined, clamped–clamped, hinged–hinged and hinged–clamped. In the tables, (1) and (2) give the exact
solutions obtained in this study by considering no effect (case 1) and all effects (case 2) respectively.

Auciello and De Rosa [4] solved some numerical examples of stepped arches with clamped–clamped,
hinged–clamped and hinged–hinged boundary conditions. The results were obtained by using the
Rayleigh–Ritz (R–R), FEM and the cell discretization methods (CDM). By neglecting all effects, the first
frequency coefficients c ¼ oR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=EI1

p
were calculated for the arches with Z ¼ 0:8 and c=fT ¼ 0:0. The

results are given in Table 1.
Tong et al. [10] and Liu and Wu [11] also solved the same examples to asses their solutions. The axial

extension, shear deformation and rotatory inertia effects were neglected in both studies. Tong et al. [10] give
the exact solution, while Liu and Wu [11] use generalized differential quadrature method and their results are
given in Table 1. The exact solution of the example is obtained with and without considering all effects and the
results are given in columns (1) and (2) in Table 1, respectively. The slenderness ratio is taken as l ¼ 50 in
column (2). A very good agreement can be found between the results in the literature and those obtained in
this study by neglecting all effects which are given in column (1). The results in column (2) are considerably
lower than those given in column (1), since the axial extension is dominant.
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Liu and Wu [11] calculated also the second frequency coefficients c ¼ oR2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=EI1

p
of the same arches.

Table 2 shows the second frequency coefficients obtained in Ref. [11] and this study. The frequency coefficients
given in column (1) are very consistent with those given in Ref. [11]. The results in column (2) are considerably
lower than both those of Ref. [11] and those given in column (1). While the first frequency coefficients in
columns (1) and (2) in Table 1 are satisfactorily close to each other for larger opening angles, the second
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Fig. 12. The first mode shapes of a clamped–clamped step circular arch with Z ¼ 0:6, fT ¼ 501, c=f ¼ 0:0. (a) Case 1, (b) Case 2 (l ¼ 50).

Table 1

The first frequency coefficients ðc ¼ oR2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=EI1

p
Þ for stepped arches (Z ¼ 0:8, c/fT ¼ 0.0): (1) no effect is considered, (2) all effects are

considered (l ¼ 50)

fT Ref. [4] R–R Ref. [4] FEM Ref. [4] CDM Ref. [10] Ref. [11] (1) (2)

Clamped– clamped

10 2277.9 — 2264.9 2277.412 2277.436 2279.747 431.438

20 567.1 566.86 564.05 567.17 567.174 567.749 162.931

30 250.37 — 249.1 250.472 250.475 250.729 89.174

40 139.62 139.72 138.88 139.647 139.649 139.791 62.227

50 88.439 — 87.887 88.372 88.372 88.462 51.019

60 60.54 60.604 60.206 60.538 60.539 60.600 45.669

70 — — — — 43.777 43.821 40.680

80 — — — — 32.917 32.951 31.225

Hinged– clamped

10 1868.5 — 1848.4 1853.663 1853.704 1855.585 363.125

20 464.76 461.15 460.03 461.342 461.352 461.820 127.893

30 205.03 — 202.95 203.52 203.525 203.731 72.164

40 114.16 113.36 112.98 113.014 113.304 113.419 54.477

50 72.103 — 71.363 71.563 71.564 71.637 47.835

60 49.269 48.978 48.775 48.91 48.911 48.961 44.119

70 — — — — 35.272 35.308 33.560

80 — — — — 26.439 26.466 25.449

Hinged– hinged

10 1462.16 — 1456 1458.852 1458.838 1460.318 281.977

20 363.32 362.667 361.92 362.609 362.613 362.981 92.991

30 160.128 — 159.33 159.625 159.627 159.789 58.300

40 88.7588 88.697 88.44 88.601 88.602 88.692 49.340

50 55.8865 — 55.651 55.75 55.750 55.807 46.123

60 37.989 38.007 37.862 37.926 37.927 37.965 36.415

70 — — — — 27.202 27.230 26.414

80 — — — — 20.262 20.283 19.809
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frequency coefficients in Table 2 are significantly different even for larger angles. This is due to the fact that the
axial extension, shear deformation and rotatory inertia effects become much more important in higher modes.

Table 3 gives the first frequency coefficients c ¼ oR2f2
T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=EI1

p
of arches with Z ¼ 0:8 and c=fT ¼ 0:0 for

clamped–clamped, hinged–clamped and hinged–hinged boundary conditions. Gutierrez et al. [6] used
polynomial functions and the Ritz method to solve in-plane vibrations of non-circular arches such as
parabola, centenary, spiral and cycloid. For circular arches, the results of Ref. [6] and the present study are
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Table 2

The second frequency coefficients ðc ¼ oR2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=EI1

p
Þ for stepped arches (Z ¼ 0:8, c/fT ¼ 0.0): (1) no effect is considered, (2) all effects are

considered (l ¼ 50)

fT Clamped–clamped Hinged–clamped Hinged–hinged

Ref. [11] (1) (2) Ref. [11] (1) (2) Ref. [11] (1) (2)

10 4027.77 4031.85 847.92 3538.34 3541.93 817.86 3054.69 3057.79 796.72

20 1005.47 1006.49 353.22 883.07 883.97 318.32 762.17 762.95 283.43

30 445.793 446.246 191.320 391.358 391.755 166.025 337.637 337.979 140.361

40 249.909 250.163 117.710 219.264 219.486 99.875 189.053 189.245 82.023

50 159.247 159.408 78.618 139.614 139.755 65.781 120.285 120.407 53.163

60 110.002 110.114 55.670 96.352 96.450 46.687 82.934 83.018 44.787

70 80.314 80.396 42.951 70.273 70.344 42.676 60.417 60.479 42.640

80 61.050 61.112 39.950 53.352 53.406 39.777 45.808 45.855 38.588

Table 3

The first frequency coefficients ðc ¼ oR2f2
T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=EI1

p
Þ for stepped arches (Z ¼ 0:8, c/fT ¼ 0.0): (1) no effect is considered, (2) all effects are

considered (l ¼ 50)

fT Clamped–clamped Hinged–clamped Hinged–hinged

Ref. [6] (1) (2) Ref. [6] (1) (2) Ref. [6] (1) (2)

10 69.39 69.375 13.129 56.92 56.467 11.050 44.54 44.439 8.581

20 69.1 69.108 19.833 56.63 56.214 15.568 44.27 44.183 11.319

30 68.64 68.669 24.423 56.21 55.797 19.764 43.9 43.763 15.967

40 68.05 68.063 30.298 55.64 55.223 26.525 43.26 43.184 24.023

50 67.35 67.299 38.813 54.91 54.499 36.391 42.56 42.456 35.089

60 66.39 66.388 50.031 54.03 53.637 48.333 41.66 41.591 39.893

Table 4

The first frequency coefficients ðc ¼ oR2f2
T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=EI1

p
Þ for stepped arch (fT ¼ 901, c/fT ¼ 0.0): (1) no effect is considered, (2) all effects are

considered

Z Ref. [5] (1) (2)

1 3.7 3.697 3.691

0.8 4.01 4.013 4.007

0.6 4.32 4.321 4.315
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given in Table 3. The examples are solved by excluding or including the effects in the analysis and the results
are given in columns (1) and (2) respectively. By neglecting all effects, excellent agreement is obtained between
the results of Ref. [6] and those obtained in this paper.

Table 4 depicts the first frequency coefficients c ¼ oR2f2
T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1=EI1

p
of cantilever circular stepped arch with

the opening angle of fT ¼ 901. Laura et al. [5] obtained the results by means of the R–R method for three
different values of Z. All results shown in the table are very consistent, since the axial extension, transverse
shear deformation and rotatory inertia effects are not so important for such a boundary condition.

4. Experimental verification

The stepped circular arches were investigated also experimentally in order to verify the theoretical
results. Experiments were designed to measure the lowest few free in plane vibration frequencies on six
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Fig. 13. Schematic view of the experimental set-up.
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laboratory-scale stepped circular arches. The arch was clamped between steel blocks at the left end and free at
the other end. The steel blocks were fastened with bolts to a concrete base. A rubber pad was placed between
the steel support and the concrete base. The concrete base was placed on the rubber supports. The schematic
view of the experimental set-up is given in Fig. 13. This design minimized the effects of vibration of the
support so that the experimental frequencies of the arch could easily be identified. The arches with two
different opening angles fT ¼ 1201 and 1801 and three different step positions c/fT ¼ �0.2, 0.0 and 0.2 were
used in the experiments. The step ratio was chosen as Z ¼ 0.8. The arches have the same radius of curvature
and cross-sectional dimensions. The radius of arch is R ¼ 0.20m. The depth of the cross-section of
b1 ¼ b2 ¼ 0.01m is constant and the widths are h1 ¼ 0.02m and h2 ¼ 0.016m at the left and right side of the
step, respectively. The arches are made of steel with the nominal material properties given by
E ¼ 2.1� 1011N/m2, r ¼ 7715 kg/m3, n ¼ 0:3.

A miniature piezoelectric accelerometer (Brüel&Kjaer, type 4500) was attached to the arches in the plane of
curvature in order to sense the in-plane vibrations. In a typical experiment, an impact hammer (Endevco, type
2302-10) was used to give a pulse excitation to the several points of the arch in according to the test planning.
PULSE (Brüel&Kjaer) data acquisition module was used to analyse the test signals from accelerometer and
hammer. The frequency range was 6 kHz. Ten measurements were performed and averaged to obtain each
measured frequency. The data were transformed to frequency response functions.

Also numerical calculations were performed by using ANSYS and converged solutions based on the 3-D 20-
node brick element Solid95 were obtained for two sets of opening angles fT ¼ 1201 and 1801 and three sets of
position parameters of step c/fT ¼ �0.2, 0.0 and 0.2. The first six frequencies are recorded in Table 5. The
results of this study and ANSYS are in an excellent agreement. Experimental results are slightly lower than the
theoretical ones. Both the theoretical and numerical results are also very consistent with the measured
frequencies.

5. Conclusions

This paper presents the exact solution of free in-plane vibration of stepped circular arches. The effects of
axial extension, shear deformation and rotatory inertia are included in the analysis. By using the initial values
method, the exact solutions are obtained in terms of the initial parameters (displacements, rotation, bending



ARTICLE IN PRESS

Table 5

The natural frequencies (Hz) for clamped–free arches. Experimental, theoretical and ANSYS results

c/fT fT ¼ 1201 fT ¼ 1801

Experiment This study ANSYS Experiment This study ANSYS

�0.2 102 105.78 105.64 50 52.29 52.228

362 388.71 389.92 140 147.89 148.20

1212 1223.03 1224.3 472 485.49 485.98

2442 2522.58 2531.6 1032 1073.31 1076

3948 4071.74 4090.5 1782 1825.23 1832.2

4918 5090.80 5094.6 2698 2735.94 2743.3

0.0 108 113.80 113.86 52 56.57 56.58

388 405.31 405.51 144 155.10 155.14

1268 1276.94 1282.2 486 504.88 506.43

2484 2557.02 2562.6 1060 1087.61 1089.5

4082 4159.28 4173.3 1828 1892.28 1899.1

5158 5223.89 5232.5 2798 2839.25 2845.5

0.2 108 113.53 113.68 52 56.28 56.32

432 447.71 448.67 158 171.75 172.01

1282 1312.76 1313.1 494 521.28 521.54

2596 2652.00 2662.6 1096 1129.44 1133.00

4282 4341.77 4358.3 1942 1986.86 1994.10

5128 5230.66 5241.5 2894 2963.95 2971.70
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moment, shear force and normal force) at the reference coordinates. The solutions are obtained also by
considering each effect individually. The effects of boundary condition, slenderness ratio, opening angle, step
ratio and position parameter of step on the frequencies are investigated.

The effect of axial extension is dominant for clamped–clamped, hinged–hinged and hinged–clamped
boundary conditions while the rotatory inertia has negligible effect on the first mode. The shear deformation
effect is dominant for a clamped–free arch and the rotatory inertia effect is dominant for a free–free arch. For
a clamped–free arch, the significantly different characteristic is observed in the first mode; the frequency
coefficient increases, as the opening angle increases which is not observed in higher modes.

The frequency coefficient increases sharply for small opening angle and then decreases slowly for larger
opening angles. This is due to the mode transition phenomenon from extensional into inextensional, which
occurs at certain combinations of curvature and length of the arch. The mode transition phenomenon is
characterized by the sharp increase in frequencies of modes which is accompanied by a significant change in
the mode shapes. The mode transition phenomenon is observed around the angle in which the frequency
coefficient starts to decrease. As the slenderness ratio increases, the mode transition occurs in smaller angles.

In the literature, the discontinuity of arch has been considered at the crown and the effects of the position of
step on the frequencies have not been investigated. In the present study, the effects of step position on both the
frequencies and the mode shapes of arches are studied. The step position affects the frequency coefficient. For
certain combinations of curvature and length of the arch, the position parameter of step can also cause the
mode transition.

The frequency coefficient increases, as the step ratio increases and the slope of the frequency coefficient
curves decreases, as the position parameters of the step increase. For a clamped–free arch, the frequency
coefficients are rather sensitive to the step position for all step ratios.

The examples in the literature are also solved. Almost all of the studies in the literature neglect the effects of
axial extension, shear deformation and rotatory inertia. The solutions are obtained by using the same
assumptions in the literature and a very good agreement between the results is observed. The results of the
present study show that it is not possible to model the actual arch behaviour by neglecting these effects.

The experiments are performed to verify the theoretical solution. Six specimens with two different opening
angles and three different step positions are used in the experiments. Only the natural frequencies are
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measured. The arches are clamped at one end and free at the other end. Also the numerical results for the
specimens are obtained by using ANSYS which is a commercial finite element program. 20-node brick element
Solid95 is used in the numerical analysis. The converged results and the theoretical results show an excellent
agreement. The measured frequencies are slightly lower than the ones computed theoretically and numerically.
Both the theoretical and numerical results are also very consistent with the experimental frequencies. The
differences between the experimental and theoretical frequencies are less than 8%.

The solution procedure given in the present study can provide more efficient and accurate evaluation of free
vibration of stepped arches as well as a physical insight into the mode transition phenomenon.

The same investigation can be proposed for circular arches with two steps which are widely used in the
practical applications. The solution procedure given in this paper can also be extended to the free vibrations of
an arch with variable cross-section and variable curvature by dividing the arch into a number of stepped
arches with constant radius of curvatures and uniform cross-sections.
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